Homework 2

(Due date: February 14th @ 11:59 pm)

Presentation and clarity are very important! Show your procedure!

PROBLEM 1 (15 PTS)

a) Multiply the following signed fixed-point numbers (6 pts):

10.0111 ×	10.01111 ×	0111.111 ×
0.110101	10.1011	10.011011

b) Get the division result (with x = 4 fractional bits) for the following signed fixed-point numbers:

101.1001 ÷	0.10101 ÷	0.101 ÷
1.0101	101.0101	1.10111

PROBLEM 2 (9 PTS)

- a) We want to represent numbers between -510.5 and 512.7. What is the fixed-point format that requires the fewest number of bits for a resolution better or equal than 0.0015? (3 pts).
- b) We want to represent numbers between -127.69 and 125.42. What is the fixed-point format that requires the fewest number of bits for a resolution better or equal than 0.0025? (3 pts).
- c) Represent these numbers in Fixed Point Arithmetic (signed numbers). Use the FX format [16 4].

CO 0E	117 2125	120 075
69.25	-11/.3123	-128.875

PROBLEM 3 (8 PTS)

a) Complete the table for the following fixed-point formats (signed numbers): (3 pts)

Fractional bits	Integer Bits	FX Format	Range	Dynamic Range (dB)	Resolution
12	4				
17	7				

b) Complete the table for these floating point formats (which resemble the IEEE-754 standard). Only consider ordinary numbers.

Exponent	Sign	ificand	Min	Max	Dango of o	Range of
bits (E)	bits (p)	FX Format	MIII	Мах	Range of e	significand
7	8					
8	15					
11	36					

PROBLEM 4 (22 PTS)

a) For the given floating-point numbers (displayed as hexadecimals), complete: bits in the fields, significand's FX format (4 pts)

√ 7BEAD360 (single – 32 bits)

sign e+bias	FX format of significand:
significand 7A09D3784D039800 (double – 64 bits)	
sign e+bias	FX format of significand:
significand	

1

Instructor: Daniel Llamocca

b) Calculate the decimal values of the following floating-point numbers represented as hexadecimals. Show your procedure.

	Single (32 bits)			Double (64 bits)		
✓	´ 3DE32856	√ BEGE2720	✓	BADAFC0FEE000000	./	800ABBAF25C00000
✓	003ACBAC	✓ FFCE3720	✓	FFFECE4710FACADE	•	800ABBAF 25C00000

PROBLEM 5 (46 PTS)

• Perform the following 32-bit floating point operations. For fixed-point division, use 8 fractional bits. Truncate the result when required. Show your work: how you got the significand and the biased exponent bits of the result. Provide the 32-bit result.

2

V	ECE5721A + FF800000	✓ 801A8000 - B3CEC000 ✓ DECAFFAD × 7F800000	✓ 800C0000 ÷ 494A0000
~	40D90000 + C2EAC000	✓ B0AE0000 - 4F4A8000 ✓ 0E2CE000 × 8B092000	✓ 49744000 ÷ C0C90000